lunes, 5 de septiembre de 2011
Titan's "Earthscape" --An Up-Close Look at Saturn's Largest Moon
Saturn's Titan has been considered a “unique world in the solar system” since 1908 when, the Spanish astronomer, José Comas y Solá, discovered that it had an atmosphere, something non-existent on other moons.
It seems perfectly appropriate that one of the prime candidates for life in our solar system, Saturn's largest moon, Titan, should have surface lakes, lightning, shorelines, relatively thick clouded nitrogen atmosphere -and seasons. Titan can be viewed as an early-model Earth. And 100% of all known Earths have awesome life on them. The significantly lower temperature is a bit of a stumbling block (it's ten times as far from the sun as us), but there's a strong possibility of subterranean microbial life - or even a prebiotic "Life could happen!" environment.
If a space traveler ever visits Titan, they will find a world where temperatures plunge to minus 274 degrees Fahrenheit, methane rains from the sky and dunes of ice or tar cover the planet's most arid regions -a cold mirror image of Earth's tropical climate, according to scientists at the University of Chicago.
Titan's ice is stronger than most bedrock found on earth, yet it is more brittle, causing it to erode more easily, according to new research by San Francisco State University Assistant Professor Leonard Sklar. Sklar and his team developed new measurements from tests on ice as cold as minus 170 degrees Celcius which demonstrate that ice gets stronger as temperature decreases. Understanding ice and its resistance to erosion is critical to answering how Titan's earth-like landscape formed. Titan has lakes, rivers and dunes, but its bedrock is made of ice as cold as minus 180 degrees Celcius, eroded by rivers of liquid methane.
"You have all these things that are analogous to Earth. At the same time, it's foreign and unfamiliar," said Ray Pierrehumbert, the Louis Block Professor in Geophysical Sciences at Chicago.
The-lagoons-of-titan-oily-liquid-confirmed-on-saturn-moon1Titan, one of Saturn's 60 moons, is the only moon in the solar system large enough to support an atmosphere. Pierrehumbert and colleague Jonathan Mitchell, have been comparing observations of Titan collected by the Cassini space probe and the Hubble Space Telescope with their own computer simulations of the moon's atmosphere.
"One of the things that attracts me about Titan is that it has a lot of the same circulation features as Earth, but done with completely different substances that work at different temperatures," Pierrehumbert said. On Earth, for example, water forms liquid and is relatively active as a vapor in the atmosphere. But on Titan, water is a rock. "It's not more volatile on Titan than sand is on Earth."
Methane-natural gas-assumes an Earth-like role of water on Titan. It exists in enough abundance to condense into rain and form puddles on the surface within the range of temperatures that occur on Titan.
"The ironic thing on Titan is that although it's much colder than Earth, it actually acts like a super-hot Earth rather than a snowball Earth, because at Titan temperatures, methane is more volatile than water vapor is at Earth temperatures," Pierrehumbert said.
Pierrehumbert and Mitchell even go so far as to call Titan's climate tropical, even though it sounds odd for a moon that orbits Saturn more than nine times farther from the sun than Earth. Along with the behavior of methane, Titan's slow rotation rate also contributes to its tropical nature. Earth's tropical weather systems extend only to plus or minus 30 degrees of latitude from the equator. But on Titan, which rotates only once every 16 days, "the tropical weather system extends to the entire planet," Pierrehumbert said.
Titan's dense, nitrogen-methane atmosphere responds much more slowly than Earth's atmosphere, as it receives about 100 times less sunlight than Earth. Seasons on Titan last more than seven Earth years. Its clouds form and move much like those on Earth, but in a much slower, more lingering fashion.
Physicists from the University of Granada and University of Valencia, analyzing data sent by the Cassini-Huygens probe from Titan, have “unequivocally” proved that there is natural electrical activity on Titan. The world scientist community believes that the probability of organic molecules, precursors of life, being formed is higher on planets or moons which have an atmosphere with electrical storms.
Scientists with NASA's Cassini mission have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. They found that the way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing -- clouds are still noticeable in the southern hemisphere while fall is approaching.
"Titan's clouds don't move with the seasons exactly as we expected," said Sebastien Rodriguez of the University of Paris Diderot, in collaboration with Cassini visual and infrared mapping spectrometer team members at the University of Nantes, France. "We see lots of clouds during the summer in the southern hemisphere, and this summer weather seems to last into the early fall. It looks like Indian summer on Earth, even if the mechanisms are radically different on Titan from those on Earth. Titan may then experience a warmer and wetter early autumn than forecasted by the models."
On Earth, abnormally warm, dry weather periods in late autumn occur when low-pressure systems are blocked in the winter hemisphere. By contrast, scientists think the sluggishness of temperature changes at the surface and low atmosphere on Titan may be responsible for its unexpected warm and wet, hence cloudy, late summer.
Scientists will continue to observe the long-term changes during Cassini's extended mission, which runs until the fall of 2010, which will offer plenty of opportunities to monitor climate change on Titan — the spacecraft makes its next flyby of the moon on June 6. We'll learn if the sluggish weather is the result of a slow rate of temperature change at the surface.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency.
Titan's South Polar Cloud Burst The infrared image of Saturn's moon Titan shows a large burst of clouds in the moon's south polar region. Image credit: NASA/JPL/University of Arizona/University of Nantes
Image Top of page : Titan's vast dune fields may act like weather vanes to determine general wind direction, have been mapped by scientists who compiled four years of radar data collected by the Cassini spacecraft.
Provided by The Daily Galaxy - University of Chicago
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario