Yesterday astronomers with the High Accuracy Radial velocity Planet Searcher or HARPS, announced a record-breaking discovery of more than fifty new exoplanets. This is the largest batch of confirmed extra solar planets ever announced at once. Another reason the discovery is noteworthy is that sixteen of the planets that were detected fall under the “super-Earth” classification, meaning the planets are thought to be rocky worlds less than ten times Earth’s mass.
The HARPS team, led by Michel Mayor from the University of Geneva, used the 3.6-metre telescope at ESO’s La Silla Observatory in Chile and claim their spectrograph instrument on the telescope is the most successful planet-finder to date. The team’s data suggests that about 40% of stars similar to our Sun have at least one planet less massive than Saturn.
The announcement of the big planetary haul was made at the Extreme Solar Systems IIexoplanet conference taking place this week in Wyoming in the US.
How did Mayor and his team discover so many planets, and how are they certain of their findings?
The HARPS instrument uses a technique called “radial velocity”. Essentially, the instrument detects the slight movement of a star moving toward and away from observers on Earth. The changes in radial velocity shift the star’s light spectrum. When the star moves away from observers on Earth, the light is shifted to longer, redder wavelengths, called redshifting. When the star moves toward Earth, the opposite happens and the star’s light is blueshifted. Through various hardware and software upgrades over the years, HARPS is now so sensitive, it can detect radial velocities of about 1 meter per second and exoplanets less than twice the mass of Earth.
The radial velocity method of exoplanet detection that HARPS uses is different from say, the Kepler mission which uses the “transit” method to detect exoplanet candidates. The transit method, comparatively speaking, still uses the light from a distant star, but instead of measuring redshift or blue shift, Kepler instead looks for a dimming of the star’s light as exoplanets pass in front of their host star.
HARPS has been operating for the past eight years, using the radial velocity technique to discover over 150 new planets. HARPS has also detected a considerable portion of the known exoplanets less massive than Neptune (seventeen Earth masses). “The harvest of discoveries from HARPS has exceeded all expectations and includes an exceptionally rich population of super-Earths and Neptune-type planets hosted by stars very similar to our Sun. And even better — the new results show that the pace of discovery is accelerating,” said Mayor.
Based on these latest findings, as well as previous HARPS discoveries, the team plans to install an exact copy of the HARPS instrumentation on the Telescopio Nazionale Galileo in the Canary Islands. The duplicate HARPS will allow scientists to survey stars in the northern sky.
“In the coming ten to twenty years we should have the first list of potentially habitable planets in the Sun’s neighborhood,” Mayor said. “Making such a list is essential before future experiments can search for possible spectroscopic signatures of life in the exoplanet atmospheres.”
The total tally of confirmed planets orbiting other stars stands at about 600, depending on who you ask. The Jet Propulsion Laboratory’s PlanetQuest website, shows 564 exoplanets while the Extrasolar Planets Encyclopedia, a database kept by astrobiologist Jean Schneider of the Paris-Meudon Observatory, lists 645 alien worlds. The discrepancy comes because PlanetQuest doesn’t add to their total until an exoplanet has been completely confirmed.
Source: ESO Press Release
Provided by Universe Today
No hay comentarios:
Publicar un comentario