"We therefore attempt to model the dynamical evolution of a terrestrial planet captured into orbit around a giant planet in the habitable zone of a star." added Porter and Grundy. "We find that approximately half of loose elliptical orbits result in stable circular orbits over timescales of less than a few million years. We also find that those orbits are mostly low-inclination, but have no prograde/retrograde preference."
The most likely candidates for "living" exomoons would be around planets very similar to Neptune and orbiting a star similar to our Sun. Once these Earth-massed satellites have stabilized into a long-lived orbit, they should be within the range of findability using the transit timing variation much stronger than the duration variation – even if their orbit is tight to the parent planet.
"In addition, we calculate the transit timing and duration variations for the resulting systems, and find that potentially habitable Earth-mass exomoons should be detectable." reports the team. "Even with these closer orbits, some exomoons are still within the range of detectability. The combination of TTV and TDV may offer a stronger detection signal than photometry for these orbits, though both could detect some of the orbits produced."
Provided by The Daily Galaxy - Universe Today