sábado, 16 de febrero de 2013

"Biological Intelligence is a Fleeting Phase in the Evolution of the Universe"


The species that you and all other living human beings on this planet belong to is Homo sapiens. During a time of dramatic climate change 200,000 years ago,Homo sapiens (modern humans) evolved in Africa. Is the human species entering another evolutionary inflection point?

Paul Davies, a British-born theoretical physicist, cosmologist, astrobiologist and Director of the Beyond Center for Fundamental Concepts in Science and Co-Director of the Cosmology Initiative at Arizona State University, says in his new book The Eerie Silence that any aliens exploring the universe will be AI-empowered machines. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain. 
"I think it very likely – in fact inevitable – that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe," Davies writes. "If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature."

Before the year 2020, scientists are expected to launch intelligent space robots that will venture out to explore the universe for us.

"Robotic exploration probably will always be the trail blazer for human exploration of far space," says Wolfgang Fink, physicist and researcher at Caltech. "We haven't yet landed a human being on Mars but we have a robot there now. In that sense, it's much easier to send a robotic explorer. When you can take the human out of the loop, that is becoming very exciting."

As the growing global population continues to increase the burden on the Earth’s natural resources, senior curator at the Smithsonian National Air and Space Museum, Roger Launius, thinks that we'll have to alter human biology to prepare to colonize space.

In the September issue of Endeavour, Launius takes a look at the historical debate surrounding human colonization of the solar system. Experiments have shown that certain life forms can survive in space. Recently, British scientists found that bacteria living on rocks taken from Britain's Beer village were able to survive 553 days in space, on the exterior of the International Space Station (ISS). The microbes returned to Earth alive, proving they could withstand the harsh environment.

Humans, on the other hand, are unable to survive beyond about a minute and a half in space without significant technological assistance. Other than some quick trips to the moon and the ISS, astronauts haven’t spent too much time too far away from Earth. Scientists don’t know enough yet about the dangers of long-distance space travel on human biological systems. A one-way trip to Mars, for example, would take approximately six months. That means astronauts will be in deep space for more than a year with potentially life-threatening consequences.

Launius, who calls himself a cyborg for using medical equipment to enhance his own life, says the difficult question is knowing where to draw the line in transforming human biological systems to adapt to space. Credit: NASA/Brittany Green

“If it's about exploration, we're doing that very effectively with robots,” Launius said. “If it's about humans going somewhere, then I think the only purpose for it is to get off this planet and become a multi-planetary species.”

Stephen Hawking agrees: "I believe that the long-term future of the human race must be in space," Hawking told the Big Think website in August. "It will be difficult enough to avoid disaster on planet Earth in the next hundred years, let alone the next thousand, or million. The human race shouldn't have all its eggs in one basket, or on one planet.”

If humans are to colonize other planets, Launius said it could well require the "next state of human evolution" to create a separate human presence where families will live and die on that planet. In other words, it wouldn't really be Homo sapien sapiens that would be living in the colonies, it could be cyborgs—a living organism with a mixture of organic and electromechanical parts—or in simpler terms, part human, part machine.

"There are cyborgs walking about us," Launius said. "There are individuals who have been technologically enhanced with things such as pacemakers and cochlea ear implants that allow those people to have fuller lives. I would not be alive without technological advances."

The possibility of using cyborgs for space travel has been the subject of research for at least half a century. A seminal  article published in 1960 by Manfred Clynes and Nathan Kline titled “Cyborgs and Space” changed the debate, saying that there was a better alternative to recreating the Earth’s environment in space, the predominant thinking during that time. The two scientists compared that approach to “a fish taking a small quantity of water along with him to live on land.” They felt that humans should be willing to partially adapt to the environment to which they would be traveling.

“Altering man’s bodily functions to meet the requirements of extraterrestrial environments would be more logical than providing an earthly environment for him in space,” Clynes and Kline wrote.

“It does raise profound ethical, moral and perhaps even religious questions that haven't been seriously addressed,” Launius said. “We have a ways to go before that happens.”

Some experts such as medical ethicist Grant Gillett believe that the danger is that we might end up producing a psychopath because we don't quite understand the nature of cyborgs.

NASA, writes Lauris, still isn’t focusing much research on how to improve human biological systems for space exploration. Instead, its Human Research Program is focused on risk reduction: risks of fatigue, inadequate nutrition, health problems and radiation. While financial and ethical concerns may have held back cyborg research, Launius believes that society may have to engage in the cyborg debate again when space programs get closer to launching long-term deep space exploration missions.

“If our objective is to become space-faring people, it's probably going to force you to reconsider how to reengineer humans,’ Launius said.

Image Credits: http://www.sentientdevelopments.com/2012/03/when-turing-test-is-not-enough-towards.html

Source: The Daily Galaxy via astrobio.net

No hay comentarios:

Publicar un comentario