domingo, 16 de octubre de 2011

New Data Hints that Mars' Hesperia Planum May Be an Ancient Lakescape


PSP_006223_1600


One of the supposedly best understood landscapes on Mars is hiding something that could rewrite the planet's history. The Hesperian marks a transition between the Noachian (a time of liquid water on the surface and the formation of lots of impact craters) and the Amazonian (a drier, colder Mars). But about all that is certain is that decades of assumptions regarding the wide, flat Hesperia Planum are not holding up very well under renewed scrutiny with higher-resolution, more recent spacecraft data.
Hesperia Planum encompasses a region of over two million square kilometers (over 770,000 square miles) in the southern highlands of Mars. It is located northwest of the Hellas basin and adjacent to Tyrrhena Patera.

"Most scientists don't want to work on the flat things," noted geologist Tracy Gregg of University at Buffalo, State University of New York. So after early Mars scientists decided Hesperia Planum looked like a lava-filled plain, no one really revisited the matter and the place was used to exemplify something rather important: The base of a major transitional period in the geologic time scale of Mars. The period is aptly called the Hesperian and it is thought to have run from 3.7 to 3.1 billion years ago.

But when Gregg and her student Carolyn Roberts started looking at this classic Martian lava plain with modern data sets, they ran into trouble.

"There's a volcano in Hesperia Planum that not many people pay attention to because it's very small," Gregg said. "As I started looking closer at the broader region -- I can't find any other volcanic vents, any flows. I just kept looking for evidence of lava flows. It's kind of frustrating. There is nothing like that in the Hesperia Planum."

"A likely cause of this trouble is the thick dust that blankets Hesperia Planum," she said. "It covers everywhere like a snowfall."

So she turned her attention to what could be discerned on Hesperia Planum: about a dozen narrow, sinuous channels, called rilles, just a few hundred meters wide and up to hundreds of kilometers long. These rilles have no obvious sources or destinations and it is not at all clear they are volcanic.

"The question I have is what made the channels," said Gregg. Was it water, lava, or something else? "There are some lavas that can be really, really runny. And both are liquids that run downhill." So either is a possibility.

"On the Moon we see these same kinds of features and we know that water couldn't have formed them there," Gregg said. So they are in the process of comparing channels on the Moon and Mars, using similar data sets from different spacecraft, to see if that sheds any light on the matter. She hopes to find evidence that will rule out water or lava on Hesperia Planum.

"Everybody assumed these were huge lava flows," said Gregg. "But if it turns out to be a lake deposit, it's a very different picture of what Mars was doing at that time." It would also make Hesperia Planum a good place to look for life, because water plus volcanic heat and minerals is widely believed to be a winning combination for getting life started.

"The 'volcanic' part is an interpretation that's beginning to fall apart," said Gregg. She has found that other scientists are interested in her work because of its possible implications on the Mars geological time scale. Gregg is not worried that Mars history will need to be rewritten, but she does suspect that Hesperia Planum is a lot more complicated than has long been thought.

Source: The Daily Galaxy - Geological Society of America

No hay comentarios:

Publicar un comentario