jueves, 6 de octubre de 2011

"The Human Brain Will Be Computer Simulated by 2020"


"The key lies in decoding and simulating the cerebral cortex — the seat of cognition. The human cortex has about 22 billion neurons and 220 trillion synapses."

Reverse-engineering the human brain so we can simulate it using computers may be a reality by 2030. It would be the first step toward creating super computers that are more powerful than the human brain by being networked into a cloud computing architecture to amplify their processing capabilities powered by intelligent algorithms, says Ray Kurzweil, artificial intelligence expert and author of The Singularity is Near.

“The singular criticism of the singularity is that brain is too complicated, too magical and there’s something about its properties we can’t emulate,” Kurzweil told attendees at the Singularity Summit over the weekend reported wired.com. “But the exponential growth in technology is being applied to reverse-engineer the brain, arguably the most important project in history.”

Reverse-engineering some aspects of hearing and speech has helped stimulate the development of artificial hearing and speech recognition, says Kurzweil. Being able to do that for the human brain could change our world significantly, he said. The key lies in decoding and simulating the cerebral cortex — the seat of cognition. The human cortex has about 22 billion neurons and 220 trillion synapses.

 "A supercomputer capable of running a software simulation of the human brain doesn’t exist yet. Researchers would require a machine with a computational capacity of at least 36.8 petaflops and a memory capacity of 3.2 petabytes — a scale that supercomputer technology isn’t expected to hit for at least three years," according to IBM cognitive computing researcher Dharmendra Modha. By next year, IBM’s ‘Sequoia’ supercomputer should be able to offer 20 petaflops per second peak performance, and an even more powerful machine will be likely in two to three years.

“Reverse-engineering the brain is being pursued in different ways,” says Kurzweil. “The objective is not necessarily to build a grand simulation — the real objective is to understand the principle of operation of the brain.” The design of the brain is in the genome. The human genome has three billion base pairs or six billion bits, which is about 800 million bytes before compression, he says. Eliminating redundancies and applying loss-less compression, that information can be compressed into about 50 million bytes, according to Kurzweil. About half of that is the brain, which comes down to 25 million bytes, or a million lines of code.

But even a perfect simulation of the human brain or cortex won’t do anything unless it is infused with knowledge and trained, says Kurzweil.

Source: The Daily Galaxy 

No hay comentarios:

Publicar un comentario