lunes, 17 de octubre de 2011

Ancient 13-Billion-Year-Old Galaxies Observed by VLT "Time Machine"


An international team of astronomers used the VLT as a time machine, to look back into the early Universe and observe several of the most distant galaxies ever detected. They have been able to measure their distances accurately and find that we are seeing them as they were between 780 million and a billion years after the Big Bang.

The Very Large Telescope (VLT) is the flagship for European ground-based astronomy made up of four separate optical telescopes organized in an array formation, built and operated by the European Southern Observatory (ESO) at the Paranal Observatory on Cerro Paranal, a 2,635 m high mountain in the Atacama Desert in northern Chile.

Working individually, each 8.2m diameter Unit Telescopes can obtain images of celestial objects as faint as magnitude 30 in a one-hour exposure, which corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye.

The VLT has stimulated a new age of discoveries, with several notable scientific firsts, including the first image of an exoplanet, tracking individual stars moving around the supermassive black hole at the center of the Milky Way, and observing the afterglow of the furthest known gamma-ray burst.

The most distant galaxy that has been reported with a distance measured by spectroscopy is at a redshift of 8.6, placing it 600 million years after the Big Bang (eso1041). There is a candidate galaxy thought to be at a redshift of about 10 (480 million years after the Big Bang) identified by the Hubble Space Telescope, but this is awaiting confirmation.

The new observations have allowed astronomers to establish a timeline for what is known as the age of reionisation for the first time. During this phase the fog of hydrogen gas in the early Universe was clearing, allowing ultraviolet light to pass unhindered for the first time.

At the time the first stars and galaxies formed, the Universe was filled with electrically neutral hydrogen gas, which absorbs ultraviolet light. As the ultraviolet radiation from these early galaxies excited the gas, making it electrically charged (ionised), it gradually became transparent to ultraviolet light. This process is technically known as reionisation, as there is thought to have been a brief period within the first 100 000 years after the Big Bang in which the hydrogen was also ionised.

The new results, which will appear in the Astrophysical Journal, build on a long and systematic search for distant galaxies that the team has carried out with the VLT over the last three years.

Dazle-wedge-50percent"Archaeologists can reconstruct a timeline of the past from the artifacts they find in different layers of soil. Astronomers can go one better: we can look directly into the remote past and observe the faint light from different galaxies at different stages in cosmic evolution," explains Adriano Fontana, of INAF Rome Astronomical Observatory who led this project. "The differences between the galaxies tell us about the changing conditions in the Universe over this important period, and how quickly these changes were occurring."

Different chemical elements glow brightly at characteristic colours. These spikes in brightness are known as emission lines. One of the strongest ultraviolet emission lines is the Lyman-alpha line, which comes from hydrogen gas. It is bright and recognisable enough to be seen even in observations of very faint and faraway galaxies. The ultra-violet Lyman alpha line is the brightest emission line of these galaxies, but will be observed in the infrared region of the spectrum because of the large redshift (z ~ 8).

Spotting the Lyman-alpha line for five very distant galaxies] allowed the team to do two key things: first, by observing how far the line had been shifted toward the red end of the spectrum, they were able to determine the galaxies' distances, and hence how soon after the Big Bang they could see them. This let them place them in order, creating a timeline which shows how the galaxies' light evolved over time. Secondly, they were able to see the extent to which the Lyman-alpha emission -- which comes from glowing hydrogen within the galaxies -- was reabsorbed by the neutral hydrogen fog in intergalactic space at different points in time.

"We see a dramatic difference in the amount of ultraviolet light that was blocked between the earliest and latest galaxies in our sample," says lead author Laura Pentericci of INAF Rome Astronomical Observatory. "When the Universe was only 780 million years old this neutral hydrogen was quite abundant, filling from 10 to 50% of the Universe' volume. But only 200 million years later the amount of neutral hydrogen had dropped to a very low level, similar to what we see today. It seems that reionisation must have happened quicker than astronomers previously thought."

As well as probing the rate at which the primordial fog cleared, the team's observations also hint at the likely source of the ultraviolet light which provided the energy necessary for reionisation to occur. There are several competing theories for where this light came from — two leading candidates are the Universe's first generation of stars, and the intense radiation emitted by matter as it falls towards black holes.

"The detailed analysis of the faint light from two of the most distant galaxies we found suggests that the very first generation of stars may have contributed to the energy output observed," says Eros Vanzella of the INAF Trieste Observatory, a member of the research team. "These would have been very young and massive stars, about five thousand times younger and one hundred times more massive than the Sun, and they may have been able to dissolve the primordial fog and make it transparent."

Astronomers classify stars into three categories, known as Population I, Population II and Population III. Population I stars, like our Sun, are rich in heavier elements synthesised in the hearts of older stars and in supernova explosions: as they are made up from the wreckage of previous generations of stars, they only came into existence later in the Universe.

Population II stars have fewer heavy elements in them and are predominantly made up of the hydrogen, helium and lithium created during the Big Bang. These are older stars, though there are still many of them in existence in the Universe today.

Population III stars have never been directly observed, though they are thought to have existed in the early years of the Universe. As these contained only the material created during the Big Bang, they contained no heavier elements at all. Because of the role of heavier elements in the formation of stars, only very large stars with very short lifespans were able to form at this stage, and so all the Population III stars quickly ended their lives in supernovae in the early years of the Universe. Up to now, no solid evidence of Population III stars has been confirmed even in observations of very distant galaxies.

The highly accurate measurements required to confirm or disprove this hypothesis, and show that the stars can produce the required energy, require observations from space, or from ESO's planned European Extremely Large Telescope, which will be the world's largest eye on the sky once completed early next decade.

Studying this early period in cosmic history is technically challenging because accurate observations of extremely distant and faint galaxies are needed, a task which can only be attempted with the most powerful telescopes. For this study, the team used the great light-gathering power of the 8.2-metre VLT to carry out spectroscopic observations, targetting galaxies first identified by the NASA/ESA Hubble Space Telescope and in deep images from the VLT.

Image top of page shows galaxies at a time less than a billion years after the Big Bang, when the Universe was still partially filled with hydrogen fog that absorbed ultraviolet light. New observations with the ESO Very Large Telescope are probing this important phase of the early Universe by studying the light from some of the most distant galaxies ever detected.

Image Credit: Image courtesy of ESO/M. Kornmesser

Source: The Daily Galaxy via ESO and

No hay comentarios:

Publicar un comentario