jueves, 26 de mayo de 2011

[Updates] Physics news - A new dimension in materials research & 6 new Items...

[Updates] Physics news - A new dimension in materials research & 6 new Items...


For more information about Updates, Click on the titles:


Physics news


(PhysOrg.com) -- Space scientists working to solve one cosmic mystery at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to better understand unidentified matter in deep space. Using a new facility so sensitive that it can recognize the molecular structure of particles in space, researchers now are able to track unidentified matter seen for the last century absorbing certain wavelengths of light from distant stars.



The move toward smarter, lighter and more powerful electronics, computers and smartphones depends on whether transistor circuits, the building blocks of such devices, can process large amounts of information. As these circuits get faster and smaller, the number of errors they generate -- arising from heat dissipation, noise and structural disorder -- in the physical information they process increases, which can impede development.



(PhysOrg.com) -- In the future, physicists will be able to follow a new lead in their search for new materials for electronic components, for example. An international team of researchers headed by scientists at the Max Planck Institute for Solid State Research in Stuttgart is the first to accurately observe how the physical properties of a substance – or to be more precise of the metal oxide lanthanum nickel oxide – change when it is used in two-dimensional, instead of three-dimensional form. In fact, a film consisting of two layers of material exhibits completely different electronic and magnetic effects when cooled to very low temperatures than does a film comprising four layers. The ability to control the physical characteristics via the dimension as well opens up new possibilities to identify materials from which the chips of the future could be made.



Vanderbilt University engineers have created a "spongy" silicon biosensor that shows promise not only for medical diagnostics, but also for the detection of dangerous toxins and other tiny molecules in the environment. This innovation was originally designed to detect the presence of particular DNA sequences, which can be extremely helpful in identifying whether or not a person is predisposed to heart disease or certain kinds of cancer. The new sensor is described in the Optical Society's open access journal, Optics Express.



The long, slow decay of carbon-14 allows archaeologists to accurately date the relics of history back to 60,000 years.



It might not seem like scraping the top of a cold stick of butter with a knife could be a scientific test, but engineers at MIT say the process is very similar to the "scratch test," which is perhaps the oldest known way to assess a material's hardness and strength — or, in scientific language, its resistance to deformation.



(PhysOrg.com) -- A team of physicists at the University of Innsbruck, led by Philipp Schindler and Rainer Blatt, has been the first to demonstrate a crucial element for a future functioning quantum computer: repetitive error correction. This allows scientists to correct errors occurring in a quantum computer efficiently. The researchers have published their findings in the scientific journal Science.





Provided by PhysOrg.com



A new dimension in materials research